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Summary

This letter report is the product of Nuclear Regulatory Commission Job Code W6505, Task 5,
a study of the feasibility and potential value of using variance-based methods as described in
NUREG/CR–6311 (McKay, 1995) to supplement regression-based methods used in the probabilistic
risk assessments of NUREG–1150. The regression-based methods of 1150 were used to assess
prediction uncertainty and importance of inputs. This report shows that the Nuclear Regulatory
Commission could assume a stronger position in support of future 1150-like analyses by augmenting
the 1150 regression-based methods with more general variance-based methods that do not require
an assumed form of a regression model. An examination of the 1150 methodology shows that
the regression-based methods used therein are really a special case within the general framework
of variance-based methods. Consideration of analysis objectives, the notion of importance, and
concerns about the adequacy of the linear analysis model lead to the recommendation that general
variance-based methods be used in conjunction with regression-based ones.

Introduction

In NUREG–1150 (1990), statistical analyses were directed towards quantifying uncertainty in model
predictions associated with uncertainty in model input values. The different importance analyses
with regard to model inputs constituted a large and complicated undertaking because of the sequence
of computations necessary to move from initiating events through consequence calculations. One
way to evaluate the potential forvariance-based methods1 to be a substantial improvement over the
regression-based methods used in 1150 probabilistic risk assessments (PRAs) is to do a comparative
analysis of results obtained from the two approaches. Because such an analysis would be very large
and time consuming, this study undertakes conceptual and theoretical comparisons. Recognition
of common objectives and quantitative definitions of importance can be used to make legitimate
comparisons of analysis techniques. Failure to consider objectives and definitions has, in the past,
lead to many arguments that certain measures or indicators ofsensitivity and importance should be
used or preferred over others. This report presents arguments and comparisons of 1150–like analysis
methods as they arise from concisely stated definitions and assumptions.

In the 1150 PRAs, the assumptions under which statistical analyses were performed, for the
most part, are the commonly used assumptions of alinear analysis model. Although analyses
were often performed on rank-transformed data, the computations were those derived from linearity
assumptions.2 The methods themselves, which I call regression-based methods, form a cornerstone
of statistical analysis. It is not being suggested that regression-based methods be discarded, for many
of them have desirable features of robustness relative to their assumptions. However, departures
from linearity can cause serious degradation of the power of regression-based methods. Therefore,
validity of the assumption of a linear analysis model, whether with raw or rank-transformed data, is
of paramount importance to evaluating how well objectives of the 1150 importance analyses are met.

Statistical analysis involves the application of laws of probability to observations for the purpose
of finding plausible explanations of the observations consistent with the probability laws. When

1 General variance-based methods also might be described as nonparametric regression methods. I am uncomfortable with the designation “variance
based” because it suggests that regression methods are not variance based. Nevertheless, I continue to use the designation for convenience.
2 The distinction between linearity in input variables and linearity in unknown parameters does not need to be made in this discussion.
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using statistics, one makes assumptions about reality in order to define appropriate laws of probability
from which hypotheses about the nature of observations may be formulated. This process involves
construction of an analysis model which incorporates all of the assumptions about the source and
nature of observations necessary to perform statistical analyses. The analysis model is formulated in
such a way that the objectives of the analysis may be met. Sometimes there seems to be no practical
alternative to the linear analysis model. When there is, however, this report strongly suggests that
alternative techniques be included as part of a complete analysis methodology.

1. Determine a preliminary set of important input variables for expert elicitations.

2. Assess uncertainty importance of inputs using probability distributions obtained from
expert panels.

3. Identify important initiating events.

Figure 1. Objectives of 1150 sensitivity and uncertainty analyses

Three objectives in the 1150 study are presented in Figure 1. First, in preliminary sensitivity
studies, the importance of inputs relative to uncertainty in predicted (calculated) values is determined.
Results from these preliminary studies are used to determine a set of input variables for expert
elicitation. Second, the uncertainty importance of inputs is assessed using the distributions obtained
from expert panels. Finally, the identification of important initiating events is made. This final
objective in the 1150 study was not limited to the study of input variables. Of fundamental interest
to the current study is the question “Would the additional use of variance-based methods put the
Nuclear Regulatory Commission (NRC) in a stronger position in similar studies because of better
quantification of uncertainty and importance of inputs?” This report answers the question in the
affirmative based on theoretical considerations. However, details of implementation of such methods
and computational demands remain unknown for 1150-like analyses. Therefore, this report considers
strengths and weaknesses of both regression-based and variance-based methods as they might be
applied in the PRAs of the 1150 study. Included in discussions that follow are considerations of
details that would be necessary to carry out variance-based methods, including anticipated difficulties
and possible approaches.

The remainder of the report is organized as follows.

• Definition of the 1150 PRA.

• Definitions related to uncertainty analysis and importance analysis.

• Some parts of an 1150 PRA where variance-based methods might be used to advantage.

• Mathematical description of regression-based methods.

• Mathematical description of general variance-based methods.

• Costs associated with regression-based and variance-based methods.

• Demonstration Application.

• Conclusions and Recommendations.
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Short Description of the PRA Analyses of NUREG–1150

Descriptions of the PRAs and analysis methods performed in support of NUREG–1150 are presented
in several places. Two particularly useful source are published in the open literature. An entire
issue of Nuclear Engineering and Design in 1992 is devoted to the topic of thermal-hydraulics
and related safety. The lead article by Breeding, Helton, Gorham, and Harper (1992a) provides a
summary description of the PRA analysis methods. The next four articles discuss the four particular
PRAs for the Surry Nuclear Power Station (Breeding, Helton, Murfin, Smith, Johnson, and Shiver,
1992b), the Peach Bottom Atomic Power Station, the Sequoyah Nuclear Plant and the Grand Gulf
Nuclear Station, respectively. The second of the sources is a paper by Helton and Breeding (1993)
in Reliability Engineering and System Safety which looks at the PRA methods in a somewhat more
abstract and mathematical setting, thus providing many specifics of the computation procedures.
The other documents upon which this report is based are the NRC reports NUREG–1150 and
its supporting documents NUREG/CR–4550 (Ericson, Wheeler, Sype, Drouin, Cramond, Camp,
Maloney, Harper, 1990), NUREG/CR–4551 (Gorham, Breeding, Helton, Brown, Murfin, Harper,
and Hora, 1993), NUREG/CR–4551 (Breeding, Helton, Murfin, and Smith, 1990), and the LaSalle
document, NUREG/CR–5305 (Brown, Payne, Jr., Miller, Johnson, Chanin, Shiver, Higgins and
Sype, 1992). Material related to 1150 analyses appearing in this report has been extracted from all
of these sources and from conversations with Frederick Harper and Ronald Iman at Sandia National
Laboratories (SNL) Albuquerque, Jon Helton, Arizona State University (and an associate with SNL),
and others. I will not make specific references to sources in the reference list except where it would be
of particular value. My apologies in advance for any errors in attribution to the authors of the reports.

IE � PDS � APB� STG� cSTG� rC

• IE denotes Initiating Events

• PDS denotes Plant Damage States

• APB denotes Accident Progression Bins

• STG denotes Source Term Groups

• cSTG denotes Consequences of Source Term Groups

• rC denotes Risk of Consequence

Figure 2. PRA calculation sequence

A matrix description of 1150 methods used by Helton and Breeding (1993) develops a sequence
of conditional probability calculations. The probabilities refer to the sequence given in Figure 2.
The probability calculations are represented in matrix notation as

rC = Px(IE)Px(PDS j IE)Px(APB j PDS)Px(STG j APB)� cSTG

3



where, for example,

P
x
(IE) is a vector of elements Pr(IEi)

and

Px(PDS j IE) is a matrix of elements Pr(PDSi j IEj) ;

whose dependence on a vector of input variables x is indicated. The elements of each conditional
probability matrix are computed with codes such as SETS, TEMAC, EVNTRE, XSOR, MACCS and
PRAMIS. At each step in a computation, codes use the outputs from preceding codes in the form
of groups of events or states in bins. It is the binning or grouping of events and states that leads to
the matrix description used. In addition, each code requires input values X for computation. The
purpose of uncertainty analysis is to quantify and gain understanding of the variability in code output
calculations due to variability in code input values x. The purpose of importance analysis is not
only to identify, from among the inputs, the major contributors to uncertainty but also to estimate
their contribution to uncertainty.

In the integrated analyses of NUREG–1150, the PRA in Figure 2 was evaluated for a sample of
inputs on the order of 200 values selected by Latin hypercube sampling (LHS) (McKay, Conover,
and Beckman, 1979). Thus, for each sample value Xi, the codes were run to produce a risk of
consequence, denoted here as

rCi = PRA(Xi) :

In point of fact, the final consequence calculations are carried out for a sample of weather conditions
and averaged to obtain rCi. Finally, the 200 or so values are displayed in the form of a complementary
cumulative distribution function (CCDF). The usual issues of uncertainty and importance, namely,
those of assessing relative importance to inputs and subsets of inputs, are directed at the CCDFs.

The 1150 analyses become complicated because the questions asked of them—for example,
“Which inputs are of significant importance to PDS probabilities?”— refer to a matrix of output
values rather than to a single computed value or a simple time series output. The analyses are
further complicated because of the subjective nature of binning of states, which has an unknown
effect on final risk calculations. An important example of this effect comes up when considering
how source term grouping affects consequence calculations in MACCS. In this example, the question
has been asked by C Lui, of the NRC, and others as to whether STGs might be better treated in
the “binning/sampling” way that weather conditions are treated. Although all of these issues are of
importance, this report concentrates on basic questions related to fundamental analysis procedures
used throughout most of the 1150 analyses.

There are two particular questions that seem very interesting but may be difficult to answer.
First, we note that the probability matrices are really functions of the inputs X . That is, for example,
one could write the conditional probability elements

Pr(PDSi j IEj) = pij(X) :

Moreover, even the choice of state and event partitioning with corresponding bins itself depends on
values of the inputs X . That is, the i and j themselves could depend on X . Therefore, code outputs
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are likely to depend on some of the code inputs in a nonlinear fashion. Thus, appropriate measures
of importance are not obvious. In particular, measures which depend on linearity assumptions are
suspect. For example, the derivative of an output with respect to an input may not even exist because
the binning effects make the relationship discontinuous.

The other question concerns the determination of the importance of initiating events. This
question does not seem to be like ones concerning importance of inputs. A reasonable approach
was taken in 1150 analyses and is described as follows. LHS samples of input values produced
samples of risk values. The calculations were partitioned depending on initiating events (actually,
the combination of initiating event and plant damage state). The mean value of risk was written as a
sum of parts, either the “mean fractional contribution to risk (MFCR)” or the “ fractional contribution
to mean risk (FCMR)” corresponding to the states and events of interest (Breeding, Helton, Gorham,
and Harper, 1992, p. 111). What seems to be missing in the literature is explanation and justification
of the decompositions.

These two questions point to a primary issue of this report, namely, a suitable definition of
“ importance” for which importance measures and indicators may be derived and against which they
may be judged. Because the regression-based methods of 1150 are special cases of variance-based
methods (as will be shown later), objectives for importance analysis are discussed and evaluated in
this report in a somewhat more general form relative to variance-based methods.

Uncertainty Analyses in NUREG–1150

The uncertainty analyses in 1150 are called analysis of prediction uncertainty by McKay (1995). A
model prediction y is denoted as the result of the computation within a model m(�). That is,

y = m(x)

for a vector of input values x. Many predictions or model outputs were used in the course of the
1150 analyses. The ones I have been primarily associated with are consequence calculations from
the computer code MACCS (Jow, Sprung, Rollstin, Ritchie, and Chanin, 1990). Therefore, much of
what is said here may be overly influenced by the personal experience acquired from using MACCS.

The prediction uncertainty in y is determined by the triple

(fx; V;m(�))

where the inputs x take on values in V with probability (density) function fx. The prediction
uncertainty in y is characterized by its induced probability distribution fy. In summary, prediction
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x � f
x
(x) ; x 2 V

y = m(x)

y � fy(y)

Figure 3. Characterization of prediction uncertainty

uncertainty is determined and characterized in Figure 3. The objective of uncertainty analysis in
1150 is to estimate fy from a set of runs, usually from an LHS sample of about 200.

Importance Analyses in NUREG–1150

Continuing to follow McKay (1995), the importance of inputs with regards to (prediction) uncertainty
can be assessed by consideration of conditional probability distributions of the model output y

conditioned on subsets Sx of the model inputs. Fundamentally, the importance of Sx depends onfy(y)� fyjsx(y j Sx = sx)
 (1)

which denotes a measure of the difference between the (marginal) distribution of y and the conditional
distribution of y given the subset Sx. Because the marginal distribution of y can be written as

fy(y) =

Z
fyjsx(y)fsx(sx)dsx ; (2)

it is argued that importance of the subset Sx is determined by the difference between fy and the family
of conditional distributions

�
fyjsx ; sx 2 Vsx

	
indexed on the value of the subset Sx (McKay, 1995,

p. 13–14). The notion that importance of an input subset is related to how well it controls the model
prediction is reasonable. Intuitively, Sx is important if fixing its values substantially reduces the
(conditional) prediction variance relative to the marginal prediction variance. With general variance-
based methods, the prediction variance from the left hand side of Equation 2 is written in terms of the
conditional variance from the right hand side, without any assumptions about the functional relation
between y and sx. Thus, it is reasonable that various (conditional) prediction variance ratios used in
variance-based methods provide appropriate measures of importance.

In 1150, the differences in Equation 1 were investigated by examining the mean of the conditional
distribution of y as a function of sx. The functional dependence of y on a subset of input variables
was determined by (stepwise) regression, often on the ranks of the variable values. The assumed form
of the regression function is part of the issue of the analysis model which is discussed later in this
report. Another method of comparing the conditional distributions with the marginal distribution of y
was suggested by Iman and Hora (1990) in the analysis of TEMAC. They considered advantages of
looking at differences in arbitrary quantiles of the distributions at the nominal values of the individual
input subsets, which amounts to a local measure of importance. For general variance-based methods,
importance is related to the expected value of the variance of the conditional distribution of y. This
topic is examined in detail later in the report to show that regression-based methods are a special
case of variance-based methods.
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Places Where General Variance-Based Methods Can Be Used To Advantage

The following sections present four examples of areas where variance-based methods can be used to
advantage. Complete arguments as to why variance-based methods provide an advantage follow from
considerations developed later in this report in the sections defining regression-based and variance-
based methods. Use of intuitive, undefined notions of importance are not sufficient for the arguments.
The order of presentation of the ideas that follows is not meant to suggest priorities. It is just that
many of the concepts addressed do not really align themselves in a hierarchical fashion.

Preliminary Screening The first place importance analysis was used in the 1150 PRAs was in
screening. The purpose of screening is to decide which input variables can safely be excluded
from further consideration as being potentially important. Before expert panels are presented lists
of input variables for which probability distributions are needed, preliminary screening is used to
arrive at a feasible number of inputs. Because substantial expense is involved with using expert
panels for constructing probability distributions of inputs, an efficient screening process is very
valuable. Obviously, the screening process must make some kinds of assumptions about the notion
of importance for it to be effective. Thus, it is important that assumptions made for screening
be consistent with the definitions and ultimate objectives of identifying inputs important to the
uncertainty of consequence calculations. Regression-based methods can fail in preliminary screening
by excluding an input that is really important to prediction variance because the output depends on
the input in a nonlinear fashion. Variance-based methods can be expected to perform better, though
it is not guaranteed to work without a sufficiently large sample size.

Base Line Studies with Generic Distributions With the screening exercises that precede expert
panel work, there is a “chicken-or-egg” dilemma because importance of inputs depends on their
probability distributions which are to be determined by the expert panel for important inputs. The
reasonable approach taken in 1150 was to let code developers and other knowledgeable persons use
the literature and their own experience to select preliminary distributions to use in the screening
exercise. Problems with this approach are twofold. First, the group doing the screening actually
defines the superset of inputs from which the screened set is chosen for the expert panels. Any
bias introduced by the definition of a superset of inputs is a matter of concern but no more relevant
to regression-based methods than to variance-based methods. However, the choice of sampling
distribution used in screening may have more bearing on one method than another. In particular,
breakdown of methods to identify important inputs—however importance might be defined—can
have devastating effects in screening.3

An advantage that variance-based methods could have over regression-based ones is that variance
can be estimated under different distributional assumptions using a single set of data using techniques
developed by Beckman and McKay (1987). The techniques use re-weighting of observations
depending on the input distribution to make inferences. On the other hand, if the linear analysis
model assumptions hold, the constructed regression model should be independent of the probability
distribution of the input variables. In this case, regression-based methods would be expected to work
acceptably well.

3 A study of possible sampling distributions to use for screening would be a good topic for research, possibly along the lines of generic maximum
variance distributions.
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Process Uncertainty and Process Evaluation Questions of importance and contribution to predic-
tion uncertainty need not be limited to parameters in models, but may be directed to processes or
phenomena both with and without specific reference to a model. Thus, questions of the importance
of a submodel and the importance of weather phenomena, for example, are related. This point can
be illustrated by considering the evaluation of the importance of the “weather process” to overall un-
certainty of consequence calculations without modeling weather in the causative sense. By analogy,
then, it can be possible to evaluate the importance of a submodel (calculation) through consideration
of only its output calculations.

The effect of weather on consequence calculations has been described as stochastic uncertainty
meaning that the state in which weather will be during a relevant time period around an accident
is best described by a probability distribution. Therefore, a probability distribution can serve as a
(descriptive) model for the weather process. Then, the questions that arise are how the weather
distribution ought to be sampled and how its importance ought to be assessed. Both regression-
based and variance-based methods could be used to evaluate parameters in a frequency distribution
of weather types, if such a parameterized distribution is assumed. However, weather is usually
described by a tabular empirical distribution for which an equivalent parametric form with a small
numbers of parameters is not likely to exist. Therefore, it seems like the question of weather is
better (and, possibly, exclusively) suited to variance-based methods, which do not rely on parametric
representations and linear analysis models relating “weather” to consequence.

Process uncertainty can occur also at the interface between models where the output of one model
is binned to become the input for the next model. An example of this is the STG step in Figure 2,
which represents the interface between the models XSOR and MACCS in the calculation sequence.
In the STG step, the output calculations of XSOR are binned or grouped according to assessed
similarities in order to reduce the very large number of source terms that would need to be considered
in MACCS. Effects of binning practices and assessment of binned output variables on uncertainty
can be treated under process uncertainty. Thus, importance of and uncertainty contribution of binned
code outputs used as inputs to the next code in a PRA and stochastic uncertainty are related issues.
Because the output of a code can be viewed as the result of a general process, just as weather states
are the result of the weather process, assessments with regards to source term groups, for example,
would be made in the same way as assessments with regards to weather states. Just as in the case
of weather, both regression-based and variance-based methods could be used to evaluate parameters
in an assumed parametric form of a frequency distribution. However, source terms, like weather,
are usually described by a tabular empirical distribution for which an equivalent parametric form
with a small numbers of parameters is not likely to exist. Thus, general variance-based methods are
preferable for assessment of importance.

Breakdowns It is known but not documented, as far as I can tell, that regression analysis has
produced some unsatisfactory results when identifying important inputs. Any particular instances
ought to be examined to see how variance-based methods might improve on regression-based
methods.
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Regression-Based Methods of NUREG–1150 and Their Analysis Model

The principal methods for assessing uncertainty importance used in the NUREG–1150 study are
regression-based methods. This section begins the development that shows why regression-based
methods are a special case of variance-based methods under the additional assumption of a linear
analysis model. The presentation indicates those situations where regression-based methods are
appropriate, although the appropriateness of regression-based methods is rarely tested in practice.
The strength of regression-based methods comes from efficient estimation procedures because the
assumption of a linear analysis model reduces the sample size required relative to that needed for
general variance-based methods.

The models used in the NUREG–1150 study describe many phenomena where the relationship
between input variables and the output is nonlinear. For the purpose of studying the uncertainty
in model prediction, however, the 1150 models—TEMAC, EVNTRE, XSOR, and MACCS—were
analyzed, by and large, by (linear) regression-based methods4 of stepwise regression and partial
correlation.5 There is no question that these methods can be effective in identifying important input
variables. However, the methods require for their validity the assumption of a linear relationship
between model output and inputs to be at least approximately true. When that assumption breaks
down, as it is known to do in some cases in the NUREG–1150 study, the process of identification
of important input variables becomes suspect. Analysis calculations with rank data might lessen the
impact of violation of the linearity assumption but they do not eliminate the difficulty. Unfortunately,
the use of rank-transformed data also converts importance measures into much less quantitative
importance indicators.

We now show why regression-based methods are a special case of variance-based methods with
the additional assumption of a linear analysis model. Let the input (row) vector

x = (x1; x2; � � � ; xp)

represent p inputs to a computer code used in the 1150 study. Let an output of the code be

y = y(t) :

The output y might be y(t) = Pr(Number of Early Fatalities > t). If the computer code is represented
by m(�), then we denote an actual code calculation or computation model by

y = m(x; t) :

The linear analysis model assumes that there is a (column) vector of unknown constants

� = (�1; �2; � � � ; �p)
t

such that the approximation to the computation model m(�),

x� =

pX

i=1

�ixi

' m(x) ;

4 Although the phrase “ regression-based methods” in this report refers to the commonly applied techniques of linear regression, statements extend in
a natural way to nonlinear regression models.
5 Analysis methods for the code TEMAC suggested by Iman and Hora (1990) for use with fault trees use R2 from a polynomial regression as an
“ importance measure.” The logarithm of the probability of the top event is the dependent variable.
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The linear analysis model is

y = E(y j x) + e

E(y j x) = x�
(3)

with
E(e) = 0

and, usually,

Cov[e; x] = 0 :

Figure 4. Linear analysis model

is sufficient for the purposes of statistical analyses. It is to be understood that a constant term may
be included in the model, for example, by introducing �0 and x0 � 1.

The error term e in the usual linear analysis model in Figure 4 is treated as a random variable
independent of x and having mean value zero. In the 1150 and similar studies, the error term is
actually the difference between a code calculation m(x) and the linear approximation x�. We return
to this point later. For now, we use the usual linear analysis model with the random error term
as an approximation to the computation model for the purpose of analysis. The phrase “ linearity
assumption” describes the analysis model in Equation 3.

In the linear analysis model, the variance of the output y is expressible as a linear combination of
the variances and covariances of the inputs x. First of all, the variance of y in Equation 3 is given by

V [y] = V [x�] + V [e] + 2Cov[x�; e]:

Under the (questionable) assumption that x and e are independent, the covariance term vanishes,
leaving

V [y] = V [x�] + V [e] :

For independent components of x, this variance of y can be written as

V [y] =

pX

i=1

�2i V [xi] + V [e] : (4)

In general, though, not all of the inputs are independent. Therefore, the variance of y takes on a
more complicated form which includes covariance terms,

V [y] =

pX

i=1

�2i V [xi] + 2

pX

i=1

pX

j<i

�i�jCov[xi; xj] + V [e] : (5)

In general vector/matrix notation, Equation 5 is written as

V [y] = �tV [x]� + V [e] : (6)
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A reasonable measure of the importance of an input variable xi which is independent of the other
inputs is the term in Equation 4 corresponding to xi. That term is �2

i
V [xi] and, relative to V [y],

measures the contribution of input xi to the variance of the output y using the linear analysis model.
One estimates the variance component by way of a regression estimate of �, which we examine
next. Before doing so, however, we mention two things. First of all, although there are other useful
measures and indicators of importance, attention focuses here on the variance of the output. This
perspective is sometimes referred to in the literature as risk-reduction importance or uncertainty
importance (NUREG-1150, volume 1, page 3–10). Secondly, when the inputs are dependent, the
construction and interpretation of importance measures and indicators is not as straightforward as
for independent inputs but still possible. The partial correlation coefficient can be an example of
an importance measure that can be used when inputs are not independent. We now continue with
examination of regression-based methods.

In the 1150 study, the linear analysis model of Equation 3 was often used with only a subset of
the input vector x of size s appearing in the x� term. The effects of the remaining components of
x were collected in the error term e. This is the case in stepwise regression, for example, where a
subset of the inputs is selected to be important and to form the regression model.

Let Sx be a subset of inputs chosen in a stepwise regression. Let their subscripts be given by
the set

Is = fi1; i2; � � � ; isg :

Let the vector of the subset of the inputs be

xs = (xi1; xi12; � � � ; xis) ;

and let the corresponding vector6 of �s be

�s = (�i1; �i2; � � � ; �is)
t
:

Then, the regression model that forms the basis for estimation and analysis is

y = xs�s + es

and it operates under the assumption that

�i = 0 for i 62 Is :

Thus, the analysis implies that the subset regression model y = xs�s is a reasonable approximation
to computation model m(�). The �-vector is estimated via the usual least squares as c�s, and the
variance of xs�s can be estimated (with bias) with the estimator of �s by

bV [xs�s] =c�s
t

V [xs]c�s :

Also, from the regression, the variance of es can be estimated with the residual mean square.
Therefore, the variance of y in Equation 6 from the stepwise regression model is estimated (with
bias) by
6 The notation for the “subset” �-vector properly might indicate a “subset” joint marginal distribution of xs and y.
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bV [y] =c�s
t

V [xs]c�s + bV [es] :

For the case of independent inputs, the estimated variance of y can be written as

bV [y] =
X
k2Is

c�s

k

2

V [xk] + bV [es] :

In this form, it is seen that the term involving the square of the estimator of � might be replaced by
a bias-corrected estimator. For this discussion, however, the biased estimator is sufficient.

All of this work finally gets us to a measure of importance from regression-based methods. The
measure is an R2 of the form

R2 =
X
k2Is

c�s

k

2

V [xk]=bV [y]

which is similar to the usual R2 used in regression, but takes into account the distribution of x.

In analyses with TEMAC within the 1150 study, Iman and Hora (1990), say that R2 is a
measure of uncertainty importance in the analysis of fault trees, but that it is not robust. They
suggest using stepwise polynomial regression on the logarithm of y. Rather than using the ratio
of variance estimates, they suggest using the ratio of quantile estimates because of the difficulty
they have in obtaining stable variance estimates. Their paper does not present an argument as to
why quantile estimates, even under the logarithm transformation, are stable. The authors may not
have encountered any problems because they examined the ratios at a nominal value of each input
rather than in expectation as is done with variance ratios. It is important to observe that their
methods require an assumed polynomial model. This kind of assumption is not necessary for general
variance-based methods.

In passing, we point out that if rank-transformed data are used in the stepwise regression, and
the usual regression R2 values are computed, an indicator of importance is created. We also point
out that correlation and partial correlation coefficients are essentially variance ratios or R2s. Thus,
the discussion of the next section applies to these quantities, too.

The derivations of this section show that the process of finding a good subset regression via
stepwise regression, for example, and using the R2 from the regression as an importance measure
for the subset is really variance based with the additional assumption of a linear analysis model. For
the procedure to function properly, it is important that the xs be sampled appropriately, which was
done with LHS in the 1150 analyses. We now examine regression-based methods to see where the
methods are particularly strong and where they might break down.

12



Issues of Appropriateness of Regression-Based Methods

Assuming that a variance-based approach to importance satisfies analysis objectives, then a variance
decomposition is a suitable measure of an input’s importance. Thus, we have shown that regression-
based methods are indeed suitable and proper methods as long as two assumptions are satisfied:
(1) the linear analysis model is appropriate, and (2) the xs are properly sampled from their own
probability distribution. The value of sampling xs for regression analysis of computer codes has
been seen in practice. The preceding derivations help to explain why. We now address the linear
analysis model assumption.

Without trying to be mathematically rigorous, the linear analysis model assumption combined
with the added assumption that the error variance, V [e], is constant and independent of x supports
efficient estimation of the variance of the conditional expectation x�. Thus, one is really saving
computer runs by making the assumptions. The problem, as expected, is that the linear analysis
model is likely to be only approximately true, at best, and very far from true in many instances. To
make matters worse, testing of the validity of the linear analysis model assumption seems to have
been omitted in the 1150 analyses. The appropriateness of the linear analysis model is easily and
properly questioned when considered against the computation models that were analyzed. In the
NUREG–1150 study, the computation models y = m(x) are highly nonlinear.

A result of a breakdown in the linear analysis model assumption is unreliable estimation of
the variance decomposition and, thus, misleading indications or lack of indications of importances.
Breakdowns are expected from three sources: (1) general nonlinearities in functional dependencies
on the inputs x, (2) binning interfaces between codes, and (3) stochastic uncertainty. The question
of the existence of other methods which do not rely on the linear analysis model is addressed
in NUREG/CR–6311 (McKay, 1995). In the next section we see how these methods compare to
regression-based methods and how they might be used to complement regression-based methods.

General Variance-Based Methods and Their Analysis Model

In the general analysis model in Figure 5, no particular assumptions are made about the form or
distribution of the conditional expectation of y given S

x
. For convenience, suppose S

x
= x. Then,

the basis of variance-based methods is the general analysis model and the well-known variance
decomposition (Parzen, 1962),

V [y] = V [E(y j x)] + E(V [y j x]) : (7)

The decomposition is seen to be the same one used in regression-based methods in Equation 6 without
assumed linear form of the conditional expectation of y, required by regression-based methods,
namely, E(y j x) = x�.

The objective of variance-based methods for 1150 analyses parallels that of regression-based
methods, and is to find input variable subsets Sx such that

E(y j Sx) ' m(x)

is a reasonable approximation to the computation model m(�).
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For any arbitrary subset Sx of inputs, the general analysis model is

y = E(y j Sx) + e

with
E(e) = 0

and
Cov[E(y j Sx); e] = � :

Figure 5. General analysis model

In integral representation, with x standing for a variable subset, Equation 7 becomesZ
(y � �y)

2
fy(y)dy =Z

(E(y j x)� �y)
2
fx(x)dx +

Z Z
(y �E(y j x))2fyjx(y)fx(x)dydx :

(8)

This latter representation may make it clearer how the variance decomposition works. The variability
in the random variable y is

V [y] =

Z
(y � �y)

2
fy(y)dy :

The amount of variability “explained” by another random variable x is measured by the size of the
variance of the expected value of y conditioned on x,

V [E(y j x)] =

Z
(E(y j x)� �y)

2
fx(x)dx :

McKay (1995) points out how estimation of Equation 7 parallels classical analysis-of-variance (AOV).
The integral form of Equation 8 suggests that for estimation via the linear analysis model, the variance
decomposition parallels the AOV for regression analysis,

Total sum of squares (SST) =

Regression sum of squares (SSR) + Error sum of squares (SSE) :

The parallel is seen by the substitutions Z
�

X
�y � y

E(y j x)� xb� :

When the variables x are sampled appropriately by LHS, for example, the three sums of squares,
SST, SSR and SSE, can be used to estimate the terms in Equation 7.

Finally, the measure of importance of x with variance-based methods is the correlation ratio,

�2 =
V [E(y j x)]

V [y]
:
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Regression-Based Methods Are a Special Case of Variance-Based Methods

That regression-based methods are a special case of variance-based methods means that the R2 from
a regression model used to assess importance is really an estimator of the correlation ratio given the
regression model. That is,

R2 '
�tV [x]�

V [y]

= �2

for the regression model E(y j x) = x�.

When looking at a single input variable x, the correlation ratio from a linear regression model
is equivalent to the square of the correlation coefficient �, defined by

� =
�xy

�x�y
:

Because
�xy = Cov(x; y)

= Cov(x;E(y j x))

= Cov(x; x�)

= ��2x ;

we see that,

�2 = �2 = �2
�2x
�2y

:

Therefore, for a single input variable and in stepwise linear regression, the R2 of a model is an
estimate of the correlation ratio of variance-based methods under a linear analysis model.

For the linear analysis model in the univariate case, we see that

� =
�xy

�2x

= �
�y

�x
;

which extends to the multivariate case as

� = V [x]�1�xy

�tV [x]� = �t
xyV [x]�1�xy

= �2 � �2y :

Costs and Strengths of Regression-Based and Variance-Based Methods

One may not have an option when it comes to choice of methods for importance analysis. Never-
theless, it is important to know the possible costs associated with particular procedures. The next
two sections summarize main points.
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Regression-Based Methods Regression-based methods require many fewer computer runs than
does variance-based methods. However, the relationship that

�2 � �2 ;

found in Kendall and Stuart (1979), shows that regression-based methods can miss important inputs
that variance-based methods can find because �2 and R2 can be small, indicating lack of importance,
while �2 can be large, properly indicating importance. Thus, it is shown that regression-based
methods can fail in preliminary screening and elsewhere to find important inputs.

Variance-Based Methods Under the linear analysis model in Figure 4, the form of the conditional
expectation of y makes its estimation apparent via estimation of beta. For the general analysis model
in Figure 5, the conditional expectation of y depends on X in an unspecified manner. Therefore,
the conditional expectation and its variance are estimated via sampling theory. The number of
computer runs necessary to assure adequate estimation is unknown in the general case because it will
depend on the specific model m(�) under study. It seems reasonable, however, to assume that the
number required is proportional to that required under a linear analysis model, with the constant of
proportionality being related to the complexity of m(�). The complexity of m(�) might be indicated
by the number of parameters in a suitable7 Taylor series expansion of m(�). Therefore, variance-based
methods might need many computer runs to properly identify important inputs.

Summary The main point of this discussion is not whether R2 works as a measure of importance,
but that the source of breakdown of regression-based methods occurs because of breakdown of the
linear analysis model assumption. Thus, the strength of variance-based methods is not so much in
the use of variance ratios and R2 as it is in the use of a general analysis model. When the linear
analysis model is valid, R2 can be estimated efficiently from a linear model. When the linear analysis
model is not valid, general variance based-methods must be used. Therefore, this report recommends
that variance-based methods be used in addition to regression-based methods, to provide the NRC
decision makers with a better foundation and better quality analytical support for making decisions
that depend on proper assessment of the importance of input variables in PRA analysis codes.

Demonstration Application

In the following demonstration application, several points relevant to measuring importance are
discussed in relation to a model with two input variables. The model output is a continuous function
of one of the inputs but a discontinuous one of the other. The response to the second input is intended
to represent what might be encountered with a model which uses (discontinuous) weather regimes
or categories as an input. Results from a simulation study are presented as examples of what one
might encounter in practice.

7 The notion of suitability and precise definitions of “suitable” need to be developed before these ideas can be used.
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Importance Indicators As shown earlier, regression-based methods are a subset of general
variance-based methods. In variance-based methods, the importance of an input x is measured
by the correlation ratio,

�2 =
V [E(y j x)]

V [y]
:

Regression-based methods assume that the functional form of the conditional expectation of y, which
appears in the numerator of the expression for �2, is known. In the linear case, the expectation is
written often as

E(y j x) = x� :

When a linear function for the conditional expectation of y is assumed, the correlation ratio is equal
to the square of the (multiple) correlation coefficient,

�2 =
�tV [x]�

V [y]

= �2 :

Estimation of Importance Indicators The correlation ratio and the correlation coefficient are
estimated (with bias) from a sample of values as follows. Let

fxi; i = 1; � � � ; ng

be a random sample of size n from fx, and let

fyik; k = 1; � � � ; rg

be a conditionally independent random sample of size r from fyjxi
for i = 1; � � � ; n. Let the sample

means be

yi =

rX

k=1

yik ; y =

nX

i=1

yi ; and x =

nX

i=1

xi :

An analysis of variance decomposition of sums of squares is given in Figure 6. Estimates of the
correlation ratio and the square of the correlation coefficient are indicated at the bottom of the figure.
An advantage of using the estimators indicated is that they have the property of their population
counterparts that 0 � b�2 � b�2 � 1, as implied in the figure. A disadvantage is that bias is introduced
because of the covariance structure of the yjk induced by the sample design. For example, the
expected value of the total sum of squares is, approximately,

E(SST) = r(n � 1)V [y] + (r � 1)E(V [y j x])

= r(n� 1)�2y + (r � 1)�2e ;
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which can be driven to nr�2y with n for fixed r. Similarly,

E(SSB) = r(n� 1)V [E(y j x)] + (n� 1)E(V [y j x])

= r(n � 1)V [E(y j x)] + (n� 1)�2

e ;

and

E(SSW) = n(r � 1)E(V [y j x])

= n(r � 1)�2

e :

With this caution in mind, we proceed to describe the demonstration model.

Source of Variation
Degrees of
Freedom

Sum of Squares

Total nr � 1 SST =
nP

i=1

rP
k=1

(yik � y)
2

Between n � 1 SSB = r
nP

i=1

(yi � y)2

Regression 1 SSR = r

�
nP

i=1

(yi � y)(xi � x)

�2
=

nP
i=1

(xi � x)2

Error (lack of fit) n� 2 SSE = SSB � SSR

Within n(r � 1) SSW =
nP

i=1

rP
k=1

(yik � yi)
2

b�2 = SSB=SSTb�2 = SSR=SST

Figure 6. Analysis of variance decomposition of sums of squares
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The Model The demonstration application is designed to show the range of results of analyses that
can be encountered for continuous inputs and categorical inputs and for regression-based and general
variance-based methods.8 The model used is simply a randomly selected polynomial function,

y = m(x; d)

= Legendre polynomial in x of degree d ;

with

x � Uniform on [�1;+1]

d � Uniform on f1; 2; 3; 4; 5g :

Thus, with probably 1=5, y is a Legendre polynomial in x of degree d. The different polynomials
represent 5 different responses of y to x. An example of 5 categorical responses might be 5 different
weather categories. The responses of y as a function of x for the 5 polynomials are plotted in Figure
7. Legendre polynomials have the properties that they are orthogonal and integrate to 0 on the
interval [�1; 1]. The mean value of y is 0, and its variance is 3043=17325 ' 0:1756.

t

y 
=

 L
eg

en
dr

e(
t)

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 7. Legendre polynomials of degree 1 to 5

8 Consideration of alternative measures of association for categorical variables are not included in this report.
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Figure 8. Conditional mean and variance of y given x

Importance of d and x Figure 7 illustrates the “ importance” of x as the change in y while moving
along one of the 5 curves. The “ importance” of d is indicated as the change in y as one moves
among the 5 curves in a vertical direction for fixed x. The meaning of importance suggested is the
change in conditional mean of y, which in now presented.

For d 2 f1; 2; 3; 4; 5g, the mean and variance of y conditioned on d are given by

E(y j d) = 0

V [y j d] =
1

2d + 1
:

(9)

The conditional mean and variance of y given x are shown in Figure 8. The mean is a smoothly
varying, generally increasing function of x. The variance is maximum at x = �1 and is 0 at x = +1.
The variance is roughly constant between –0.5 and 0.5.

Importance indicators, whether they are �2 or �2, are intended to show how an input influences,
in some way, the value of an output. In variance-based methods, we look to see how an input
controls the value of the output in the sense of how much the variance of the output is reduced
when the value of the input is held fixed. Specifically, �2 measures how much, on average, the
variance of y conditioned on an input is reduced relative to the unconditional variance. Equivalently,
�2 measures how closely the variance of the conditional expected value of y matches, on average,
the unconditional variance of y.

As an example, we see from Equation 9 that, for all values of d, the expected value of y given d

is a constant, namely, 0. Thus, the variance of the conditional expected value of y is 0 and not close
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TABLE I
Importance indicators with y = Legendre(x; d) for

d uniform on 1; 2; � � � ; d
max

and x uniform on [�1; 1].

d x

d
max

�2 �2 �2 �2

Values for model used in demonstration application

5 0 0 .08 .20

Values for a range of polynomial models for comparison

1 — — 1.0 1.0

2 0 0 .31 .50

3 0 0 .16 .33

4 0 0 .11 .25

5 0 0 .08 .20

10 0 0 .03 .10

to the unconditional variance of y. Therefore, d is measured to be unimportant by variance-based
methods, in general, including regression-based methods.

Population values of �2 and �2 are given in Table I, and components of the correlation ratio
are found in Table II. We see from the tables that the expected value of y given d does not change.
Therefore, both the correlation ratio and the correlation coefficient are 0, which indicates not only that
d is unimportant, but that it is an irrelevant input with respect to the importance measure. However,
while it is true that the expected value of y given d is constant for all d, the variance of y given
d is not, as shown in Equation 9. Therefore, one is lead to the observation that variance-based
measures of importance, which use the variance of the conditional expectation of y, may not always
be effective as indicators of importance.9

Sampling Variability of Importance Measures Sampling variability of estimators of the correla-
tion ratio and the correlation coefficient for x and d can be significant, as shown in this section.
Estimators of the importance indicators were computed in a simulation study of size 100 for several
values of n and r.

For inputs with an infinite number of values, like the continuous input x, n is the number of
distinct values sampled for each simulation run and r is the number of replicate values of y obtained
by sampling the other inputs. For inputs like d, which can take on only a finite number of values,
the number of distinct values can be less than n. In this demonstration, the number of distinct values
of d is always 5. Therefore, for d, the number of replicate values of y is r � n=5, which was made
an integer by the choices of r and n.

9 Conditional entropy might be evaluated as an alternative measure of importance in this case.
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TABLE II
Variance decomposition

Input
E(y j input) V [E(y j input)] E(V [y j input ]) V [y]

d
0 0

3043

17325
' 0:1756

3043

17325
' 0:1756

x
polynmial in x (See

Figure 8)
3043

86625
' :0351

12172

86625
' 0:1405

3043

17325
' 0:1756
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Figure 9. 100 simulations with n = 5 and r = 2

The minimum number of replicated values required for estimation is r = 2. Figures 9, 10, and 11
show histograms of the estimators of the correlation ratio and the square of the correlation coefficient
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Figure 10. 100 simulations with n = 10 and r = 2

(both defined in Figure 6) for r = 2 and n = 5; 10; 50.

The upper left graph in each of the figures is a histogram of the estimator of the correlation ratio
for x. The estimates of �2

x
have vary large spreads for n = 5 and n = 10 which converge to a biased

estimate as indicated by their distribution for n = 50. To get an idea of the bias, one can examine the
expected values of the sums of squares in the estimator of �2. The ratio of expectations is given by

E(SSB)
E(SST)

=
(n� 1)(r � 1)�2 + (n� 1)

rn � 1 � (r � 1)�2
:

In the limit with n,

lim
n!1

E(SSB)
E(SST)

=

�
1 �

1

r

�
�2 +

1

r

While the ratio of expectations is not equal to the expectation of the ratio, the result shows the order
of the bias with r in the estimator of �2. In this demonstration, for which �2

x
= 0:2, the limiting

value of the ratio of expectations is 0.6, clearly consistent with Figure 11. Figure 12 indicates more
succinctly for r = 2 the convergence of the biased estimator with n. To complete the picture, Figure
13 shows the convergence with r of the estimator to the population value of 0.2 for n = 50.
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Figure 11. 100 simulations with n = 50 and r = 2

The upper right graph in each of the Figures 9, 10, and 11 is a histogram of the estimator of
the correlation ratio for d. The population value of the correlation ratio for d is 0. Therefore, we
compare the simulation results with the limit with n with �2 = 0 of

lim
n!1

E(SSB)

E(SST)
= lim

n!1

n � 1

rn� 1
=

1

r
;

which is not consistent with the results of Figure 11. These results indicate that the ratio-of-
expectations approximations is not valid for very small values of the correlation ratio. This fact
poses no problems in application.

The lower left and right graphs in the figures pertain to estimators of the square of the correlation
coefficient. Results for n = 5 indicate, as in the case of the correlation ratio, that the sample size is
to small for meaningful conclusions. Figure 11 results are consistent with theoretical results for the
correlation coefficient, that say that neither x nor d is an important input.

Finally, estimates of �2
x

and �2
x

for n = 5; 10; 50 grouped by r = 2; 5; 20 are shown in Figures 14
and 15, respectively. The figures support the conclusions that a substantial number of computer runs
may be necessary to adequately estimate the correlation ratio, and that the correlation coefficient can
fail to detect important inputs.
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Figure 12. Convergence of the estimated correlation ratio for x with n = 5; 10; 50; 100; 1000 to
biased value for r = 2, where each box plot contains 100 simulations

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

η 
   

fo
r 

t
∧

2

r = 2  3  5  20  100

Figure 13. Convergence of the estimated correlation ratio for x with
r = 2; 3; 5; 20; 100 for n = 50, where each box plot contains 100 simulations

Conclusions and Recommendations

The NRC could assume a stronger position in support of future 1150-like PRAs by augmenting
regression-based methods of importance analysis with more general variance-based ones. General
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Figure 14. Estimates of the correlation ratio for x with n = 5; 10; 50 grouped by r = 2; 5; 20
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Figure 15. Estimates of the square of the correlation
coefficient for x with n = 5; 10; 50 grouped by r = 2; 5; 20

variance-based methods are theoretically superior to regression-based methods which can be expected
to fail to detect important inputs in some situations when models are nonlinear. However, general
variance-based methods require substantially more computer runs to be effective. Nevertheless,
through the use of general variance-based methods together with regression-based ones, NRC decision
makers would have sound theoretical foundation and better quality analytical support for making
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decisions that depend on proper assessment of the importance of input variables in PRA analysis
codes.

Several recommendations and topics for investigation and research are indicated in this report.

• Whether regression-based methods or variance-based methods are used, techniques for
evaluating the adequacy of assumptions of the analysis model, particularly, in the case
of regression-based methods, and adequacy of the sampling design, particularly, in the
case of variance-based methods, should be incorporated in analysis procedures.

• Methods for evaluating adequacy, possibly along the lines of goodness of fit procedures
and cross validation, should be researched and developed for incorporation into PRA
uncertainty and importance analysis procedures.

• Efficient sampling plans for use with general variance-based methods should be de-
veloped in order to reduce the computational requirements of variance-based methods.
A possible starting point would be the investigation of reuse or multiple-use sampling
plans for LHS.

• Because of the cost effectiveness of screening exercises for assessing importance of input
variables, study of appropriate sampling distributions to use with screening would be a
good topic for research, which might begin along the lines of using generic maximum
variance distributions.

• Many important issues related to stochastic uncertainty and the use of binning in PRAs
remain undiscovered or unresolved. Research into either or both of these areas is
recommended.
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